Design and Fabrication of a 500 kWe Lithium-fed Lorentz Force Accelerator

Jay Polk¹, John Blandino¹, Robert Shotwell¹, Keith Goodfellow¹, Van Luong², Alok Majumdar², and Frank Zimmerman²

¹Jet Propulsion Laboratory ²Marshall Space Flight Center

Lithium Lorentz Force Accelerators are Ideal for Verv High Power Applications

J X B forces accelerate plasma axially and radially

2.3 kWe NSTAR Ion Thruster
Electromagnetic acceleration allows >200 times the power of the
NSTAR ion engine to be processed in the same volume

Lithium-fed Lorentz Force Accelerators (LFA's) are under investigation because:

- Physics of operation yield high power processing capability
- Lithium propellant has potential for very high efficiency--low first ionization potential, high second ionization potential, and high first excited state of the ion yield low frozen flow losses

Very high power propulsion systems enable many far-term missions:

- Orbit-raising heavy payloads in Earth orbit
- Piloted Mars and Mars cargo missions
- Fast robotic and piloted outer planet missions
- Interstellar precursor missions

Large Russian Experience Base Demonstrates Technology Potential for HEDS

Organization	Power (kWe)	Current (kA)	Specific Impulse (s)	Efficiency	Typical Operating Period	Notes
NIITP	300-1000	6-15	3500-5000	40-60	5 min	NIITP design
Fakel	300-500	6-9	3500-4500	40-60	30 min	Energiya design
Energiya	300-500	6-9	3500-4500	40-60	30 min	Energiya design
Energiya	500	9	4500	55	500 hours	Endurance test of Energiya design
Energiya	250-500	5-8	3000-4500	35-55	30-60 min	Coaxial thruster with long cathode. Stopped because of cathode failure
MAI	300-500	6-9	3500-4500	40-60	30 min	Energiya design

Energiya 500 kWe thruster design.

- Development of high power Lifed thrusters continued in Russia.
- Capabilities required for HEDS largely attained.
 - High performance verified at
 3 different institutions.
 - 500 hour lifetest at 500 kWe successfully completed.
 Several thousand hour life projected.

Recent Experimental and Theoretical Results Show Path to MWe Plasma Thrusters MULTIMEGAWATT **POWER TECHNOLOGY** Anode Texturing 1 - 5 MWe 200 kWe • Heat Pipes **Steady State** Routine Access to **Steady State** the Solar System h = 60%PERFORMANCE Isp 8000 s h = 50%• Lithium Propellant Active Turbulence Suppression Isp = 4000 s Multi-Channel Hollow Cathodes 100's of Hrs 10000 Hrs • Barium Addition At 3000 A At 20000 A 200 kWe Lithium-fed Thruster $10^{-10} \text{ g/cm}^2\text{s}$ $10^{-8} \text{ g/cm}^2\text{s}$ • Plume Shields at 0.3 m at 30 m • Booms STATE OF THE ART

Propulsion Niches for High Power Lorentz Force Accelerators Define Evolutionary Path

• 0.5 -- 1 MWe lithium-fed thrusters are ideal for near-term applications

- First generation power sources with system power levels of 1-5 MWe
- Specific impulse of 4000-6000 s
- Orbit transfer and Mars cargo applications

• 1-- 5 MWe lithium thrusters fulfill mid-term propulsion requirements

- Second generation power systems at 10--30
 MWe
- Specific impulse of 4000-6000 s
- Initial piloted Mars missions

• 5--10 MWe hydrogen or deuterium-fed thrusters open up the solar system

- Third generation (very low alpha) power systems at 100's of MWe's
- Terminal voltage with lithium is too low to process very high power levels; hydrogen appears to provide required efficiency at Isp's of 10000-15000 s
- Piloted missions to Mars and the outer planets

Overview of the 500KW Design

Chart not available

Performance Requirements Dictate Some Design Characteristics

• Chart not available

Cathode Design Exploits Multihollow Cathode Geometry

- Total cathode emission current dictated by power requirements
- Cathode sized to give tolerable current density assuming thermionic emission from pure tungsten surfaces in multichannel hollow cathode
 - Cathode tube fabricated by vacuum plasma spray deposition by MSFC; rods fabricated from 6.4 mm diameter tungsten welding rod

Achieving Long Cathode Life Will Likely Require Addition of a Small Amount of Barium to Propellant

Higher current density capability enabled by addition of barium vapor to propellant flow through cathode

Preliminary experiments at MAI show 300-400 °C decrease in cathode temperature with barium addition

- Work function of pure tungsten is relatively high; resulting operating temperature will limit cathode lifetime to several hundred hours
- JPL models of surface kinetics suggest that modest amounts of barium in propellant stream reduce the work function and lower cathode temperatures
- Preliminary experiments at MAI verify temperature decrease
 - Up to 300-400 °C drop in temperature observed in tests with uncontrolled flows of Ba
 - Very high barium flow rates actually limit achievable discharge current
- 500 kWe engine cathode assembly is designed to accommodate a separate barium vaporizer

Anode Design is Driven by Thermal and Performance Considerations

The radiation-cooled anode design is a compromise between thermal management and performance

- Isp requirement drives design to as small an anode radius as possible
- Radiative cooling requirement favors large anode areas
- Minimizing temperature difference between interior and exterior anode surfaces drives design to thin anodes
- Anode must have sufficient crosssectional area to prevent excessive Joule heating

Anode dimensions were chosen on the basis of

- Approximate performance analysis
- Anode thermal analysis
- Fabrication constraints

Anode Thermal Analysis of Candidate Design Incorporates All Important Heat Transfer Processes

COCESSES

Marshall Space Flight Center

Thermodynamics and Heat Transfer Group

- 2-D axisymmetric geometry
- Temperature dependent thermal conductivity, resistivity and emissivity
- Arc heat inputs on interior surface, volumetric Joule heating, heat conduction along anode support rods
- Radiative coupling between anode, cathode, discharge chamber and environment determined from radiative view factors

Results Indicate Tolerable Temperatures with High Emissivity Coatings

Uniform heat flux to anode interior surface

Marshall Space Flight Center Thermodynamics and Heat Transfer Group

- 200 kW total arc heat load assumed as realistic upper bound for 500 kWe operation
- Anode heat flux distribution is not known; two distributions modeled to determine sensitivity
- Emissivity of anode exterior surface treated parametrically to study effect of high emissivity coatings
- Peak temperatures with ZrB₂ plasma-sprayed coatings developed in JPL 30 kWe ammonia arcjet program are 2000-2200 °C

Subscale Tests Used to Validate Anode Fabrication Methods

- Several methods for fabricating large, thin-walled tungsten structures evaluated
 - Conventional machining
 - Chemical vapor deposition
 - Vacuum plasma spray deposition
- Subscale tests with applied field MPD thruster operated with argon at power level up to 50 kWe demonstrated plasma sprayed anode operation with temperatures as high as 2100 °C
- Test anodes fabricated at MSFC demonstrated feasibility of fabricating large scale parts; actual anodes now being sprayed

Full scale test anode fabricated at MSFC/Rocketdyne Vacuum Plasma Spray Facility

Lithium Vaporizer is Integrated Into Engine Cathode Assembly

Lithium Vaporizer Heat Exchanger Sized by Approximate Thermal Analysis

Heater Power (W)

The High Power Lithium Plasma Thruster

Test Facility to Support 500 kWe Engine Development

• Unique Features

- Custom liner designed to capture lithium plume when cooled. Liner can be heated to melt and drain lithium metal.
- 1 MWt cooling capability
- 9000 A discharge current capability

• Applications

- Performance testing 500 kWe-class lithium MPD thrusters
- Characterization of high power lithium thruster plumes

Vacuum chamber liner is designed to safely handle lithium propellant